
Automatic Adaptation of Learning Rate for

Backpropagation Neural Networks

V.P. Plagianakos, D.G. Sotiropoulos, and M.N. Vrahatis

University of Patras, Department of Mathematics, GR-265 00, Patras, Greece.

e-mail: vpp|dgs|vrahatis@math.upatras.gr.

Abstract

A method improving the convergence rate of the
backpropagation algorithm is proposed. This
method adapts the learning rate using the Barzi-
lai and Borwein [IMA J.Numer. Anal., 8, 141–
148, 1988] steplength update for gradient descent
methods. The determined learning rate is differ-
ent for each epoch and depends on the weights
and gradient values of the previous one. Exper-
imental results show that the proposed method
considerably improves the convergence rates of
the backpropagation algorithm and, for the cho-
sen test problems, outperforms other well-known
training methods.

1 Introduction

Artificial Feedforward Neural Networks (FNNs)
have been widely used in many application areas
in recent years and have shown their strength in
solving hard problems in Artificial Intelligence.
Although many different models of neural net-
works have been proposed, multilayered FNNs
are the commonest. In order to train an FNN,
supervised training is probably the most fre-
quently used technique in our field. The training
process is an incremental adaptation of connec-
tion weights that propagate information between
simple processing units called neurons. The neu-
rons are arranged in layers and connections be-
tween the neurons of one layer to those of the
next exist.

Consider an FNN whose the l-th layer contains
Nl neurons, l = 1, . . . ,M . The network is based

on the following equations:

netlj =

Nl−1
∑

i=1

w
l−1,l
ij yl−1

i , yl
j = f(netlj),

where wl−1,l
ij is the weights from the i-th neuron

at the (l − 1) layer to the j-th neuron at the l-
th layer, yl

j is the output of the j-th neuron that

belongs to the l-th layer, and f(netlj) is the j-th’s
neuron activation function. The training process
can be realized by minimizing the error function
E defined by

E =
1

2

P
∑

p=1

NM
∑

j=1

(

yM
j,p − tj,p

)2

=
P

∑

p=1

Ep, (1)

where
(

yM
j,p − tj,p

)2

is the squared difference be-

tween the actual output value at the j-th output
layer neuron for the pattern p and the target out-
put value, and p is an index over input-output
pairs. The function E also provides the error
surface over the weight space.

To simplify the formulation of the above equa-
tions, let us use a unified notation for the
weights. Thus, for an FNN with n weights, let
w be a column weight vector with components
w1, w2, . . . , wn, defined on the n–dimensional
Euclidean space IRn, and w⋆ be an optimal
weight vector with components w⋆

1, w
⋆
2, . . . , w

⋆
n.

Also, let E be the batch error measure defined
as the sum of squared differences error function
over the entire training set, and ∇E(w) be the
gradient vector of the error function E at w.
The batch training of an FNN is consistent with
the theory of unconstrained optimization since
it uses information from all the training set, i.e.

the true gradient, and can be viewed as the mini-
mization of the error function E. This minimiza-
tion task corresponds to the weight update by
epoch and, requires a sequence of weight vectors
{wk}∞k=0

, where k indicates epochs. Successful
training implies that {wk}∞k=0

converges to the
point w⋆ that minimizes E.

The remaining of the paper is organized as fol-
lows: In Section 2 we propose a training algo-
rithm with adaptive learning rate based on the
Barzilai and Borwein steplength update for gra-
dient descent methods [1]. Experiments and sim-
ulation results are presented in Section 3. The
final section contains concluding remarks and a
short discussion for further work.

2 The proposed algorithm

Our aim is to minimize the error function E

minE(w), w ∈ IRn, (2)

where E ∈ C2. The gradient ∇E(w) can be ob-
tained by means of back-propagation of errors
through the layers. Let the family of gradient
training algorithms having the iterative form

wk+1 = wk + ηkdk, k = 0, 1, 2, . . . (3)

where wk be the current point, dk be a search
direction, and ηk be the steplength. Various
choices of the direction dk give rise to distinct
algorithms. A broad class of methods uses
dk = −∇E(wk) as a search direction, and the
steplength ηk is given by means of either an ex-
act line search

min
ηk>0

E
(

wk − ηk∇E(wk)
)

(4)

or an inexact line search satisfying Wolfe’s con-
ditions [8].

The widely used gradient-based training al-
gorithm, named batch back–propagation (BP),
minimizes the error function using the following
steepest descent method with constant, heuristi-
cally chosen, learning rate η:

wk+1 = wk − η∇E(wk). (5)

Clearly, the behaviour of any algorithm depends
on the choice of the steplength no less than the
choice of the search direction. It is well known
that pure gradient descent methods with fixed
learning rate tend to be inefficient (see [5]). This
happens, for example, when the search space
contains long ravines that are characterized by
sharp curvature across them and a gently slop-
ing floor [6].

The proposed algorithm is an adaptive learn-
ing rate algorithm based on the Barzilai and Bor-
wein steplength update for the steepest descent
method [1]. Barzilai and Borwein proposed a gra-
dient method where the search direction is always
the negative gradient direction, but the choice of
the steplength (learning rate) is not the classi-
cal choice of the steepest descent method. The
motivation for this choice is that it provides two–
point approximation to the secant equation un-
derlying quasi-Newton methods [5]. This yields
the iteration:

wk+1 = wk − ηk∇E(wk), (6)

where ηk for the kth epoch is given by

ηk =
〈δk−1, δk−1〉

〈δk−1, ψk−1〉
(7)

where δk−1 = wk − wk−1, ψk−1 = ∇E(wk) −
∇E(wk−1) and 〈· , ·〉 denotes the standard inner
product. The key features of this method are
the low storage requirements and the inexpen-
sive computations. Moreover, it does not guar-
antee descent in the error function E. Exper-
iments show that this property is valuable in
neural network training because very often the
method escapes from local minima and flat val-
leys where other methods are trapped. Further-
more, the method requires no line searches dur-
ing the training process and less computational
effort than methods which use (4) to determine
their steplength.

The only implementation problem of the above
method, when applied to train an FNN, is that
the update formula (7) potentially gives large val-
ues for the learning rate ηk. In this case, the
method may overshoot the minimum w⋆ or pos-
sibly diverge. To overcome this problem, we in-
troduce a parameter µ, called maximum growth

2

factor. The learning rate ηk is not allowed to
be greater in magnitude than µ times the previ-
ous learning rate ηk−1. Formally, the proposed
method (BBP) is stated as

wk+1 = wk − λk∇E(wk), (8)

where the new learning rate λk is given by

λk =







ηk ,

∣

∣

∣

∣

ηk

ηk−1

∣

∣

∣

∣

≤ µ

µ ηk−1, otherwise

Optimal convergence speed can be obtained by
tuning parameter µ. However, tuning µ is quite
difficult and seems to be problem dependent. In
our simulations, no effort for tuning µ is neces-
sary since the BBP method outperforms other
well-known methods when compared with them.

3 Experiments and Results

A computer simulation has been developed to
study the properties of the learning algorithms.
The simulations have been carried out on a Pen-
tium 133MHz PC IBM compatible using MAT-
LAB version 5.01. The performance of the
BBP algorithm has been evaluated and com-
pared with the batch versions of BP, momen-
tum BP (MBP) [3], and adaptive BP (ABP) [7],
from Matlab Neural Network Toolbox version
2.0.4. Toolbox default values for the heuristic
parameters of the above algorithms are used, un-
less stated otherwise. For the BBP algorithm,
maximum growth factor value is fixed to µ = 2.
The algorithms were tested using the same ini-
tial weights, initialized by the Nguyen–Widrow
method [4], and received the same sequence of
input patterns. The weights of the network are
updated only after the entire set of patterns to
be learned has been presented.

For each of the test problems, a table sum-
marizing the performance of the algorithms for
simulations that reached solution is presented.
The reported parameters are: min the mini-
mum number of epochs, mean the mean value
of epochs, max the maximum number of epochs,
s.d. the standard deviation of epochs, and succ.

the simulations succeeded out of 100 trials within

Algorithm min mean max s.d. succ.

BP 34 197.76 745 167.93 58
MBP 36 212.18 822 173.40 60
ABP 20 104.92 648 142.11 63
BBP 8 107.02 957 186.34 71

Table 1: Results of simulations for the XOR
problem

the error function evaluations limit. If an algo-
rithm fails to converge within the above limit, it
is considered that it fails to train the FNN, but its
epochs are not included in the statistical analysis
of the algorithms. This fact clearly favours BP,
MBP and ABP that require too many epochs to
complete the task and/or often fail to find the
minimum w⋆.

3.1 The Exclusive-OR Problem

The first test problem we will consider is the
exclusive-OR (XOR) Boolean function problem,
which has historically been considered a good
test of a network model and learning algorithm.
The XOR function maps two binary inputs to a
single binary output. This simple Boolean func-
tion is not linearly separable (i.e. it cannot be
solved by a simple mapping directly from the in-
puts to the output), and thus requires the use
of extra hidden units to learn the task. More-
over, it is sensitive to initial weights as well as to
learning rate variations and presents a multitude
of local minima with certain weight vectors. A
2-2-1 FNN (six weights, three biases) has been
used to train the XOR problem. For the BP and
MBP algorithms the learning rate is chosen to be
0.1 instead of the default value 0.01 to acceler-
ate their convergence, since – for this problem –
they converge slowly with the default value. The
termination criterion is E ≤ 0.01 within 1000
epochs. The results of the simulation are shown
in Table 1. In Figure 1 the learning rate variation
of the BBP method is plotted versus the epochs
for one typical trial.

3

Figure 1: Behaviour of the learning rate of the
BBP method over epoch for the XOR problem

Algorithm min mean max s.d. succ.

BP – – – – 0
MBP 246 485.44 973 195.42 48
ABP 465 599.19 924 103.91 45
BBP 114 266.17 865 194.08 60

Table 2: Results of simulations for 3 Bit Parity
problem

3.2 3-Bit Parity

The parity problem can be considered as a gen-
eralized XOR problem but it is more difficult.
The task is to train a neural network to produce
the sum, mod 2, of 3 binary inputs – otherwise
known as computing the “odd parity” function.
We use a 3-2-1 ANN (eight weights, three biases)
to train the 3-Bit Parity problem. The results of
the computer simulation are summarized in Ta-
ble 2.

Despite the effort we made to choose its learn-
ing rate, BP diverged in all the simulations. On
the other hand, the MBP and ABP algorithms
performed much better, with MBP slightly out-
performing ABP. The BBP algorithm 60 times
successfully trained the FNN mentioned above
and exhibited the best performance. Addition-
ally, the average epochs needed (approximately
266) were the best compared with the other al-
gorithms. In Figure 2 the learning rate variation

Figure 2: Behaviour of the learning rate of the
BBP method over epoch for the 3-Bit parity
problem

Algorithm min mean max s.d. succ.

BP 1132 1533.49 1963 195.84 80
MBP 1263 1496.67 1697 218.91 3
ABP 1342 1756.94 1965 165.67 35
BBP 270 470.12 716 90.44 100

Table 3: Results of simulations for the font prob-
lem

for the BBP method is plotted.

3.3 The Font Learning Problem

In this simulation we consider the font learning
problem. We present to the network 26 matrices
with the capital letters of the English alphabet.
Each letter has been defined in terms of binary
values on a grid of size 5× 7. For this problem a
35-30-26 FNN (1830 weights, 56 biases) has been
used. The performance of the methods has been
measured and the Table 3 shows the results. In
order to help the methods with fixed learning
rate (i.e. BP and MBP), the weights have been
initialized following the Nguyen–Widrow method
but afterwards the weights and biases of the out-
put layer have been multiplied by 0.01. BBP
method has also performed very well without this
scaling and exhibited a success rate of 84%, when
the other methods failed to converge. Addition-

4

ally, the error function evaluations limit has been
increased to 2000, since (as indicated by the mini-
mum number of epochs needed to train the FNN)
all the methods – except the proposed one, which
had maximum number of epochs 716 – failed to
complete the task within the standard limit we
used in the previous test problems.

3.4 Continuous function approxima-

tion

The forth test problem we consider is the approx-
imation of the continuous trigonometric function,
f(x) = sin(x) cos(2x). In this problem we con-
sider the performance of the methods to form a
look-up table for the function mentioned above.
In this case a 1-15-1 FNN (thirty weights, six-

Algorithm min mean max s.d. succ.

BP 566 724.81 969 128.87 16
MBP 561 718.25 963 131.66 16
ABP 280 577.26 970 200.01 27
BBP 63 309.82 966 230.28 74

Table 4: Results of simulations for function ap-
proximation

teen biases) is trained to approximate the func-
tion f(x), where the input values are scattered
in the interval [0, 2π] and the network is trained
until the sum of the squares of the errors (over
20 input/output sets) becomes less than the er-
ror goal 0.1. The network is based on hidden
neurons of logistic activations with biases and on
a linear output neuron with bias. Comparative
results are exhibited in Table 4. Once again, the
BBP method exhibited the best performance and
had a very high success rate 74%.

3.5 Restarting the training

Fahlman [2] introduces the idea of restarting the
training of a network which has taken “too long”
to learn, but does not specify how long that
should be. Heuristic rules have been investi-
gated by many researchers in order to determine
where the best point to restart the learning is.
One of the advantages of the proposed method
is that gives a secure mechanism to decide when

to restart. We are able to restart the process of
training, if the inner product 〈δk−1, ψk−1〉 in the
denominator in (7) tends to zero.

Problem min mean max s.d. succ.

Prob. 3.1 9 98.17 404 84.43 100
Prob. 3.4 22 205.09 834 164.26 99

Table 5: Results of the R-BBP for the XOR and
function approximation problems

We have tested this technique and the results
for the XOR and the function approximation
problems are shown in Table 5. The performance
of the method with restarts (R-BBP) is similar
to BBP method for the rest test problems. When
using this technique, there is no need to use the
heuristic parameter µ to control the learning rate
increase and, in fact, the method performs better
without this constrain.

4 Concluding Remarks

A simple technique for the adaptation of the
learning rate for batch training FNNs is pro-
posed. It is shown that this adaptation improves
the convergence speed in several classical test
problems. To obtain optimal convergence speed,
only one heuristic parameter is required to be
tuned. One of the main advantages of the pro-
posed algorithm lies in the fact that for many
test problems no choice of parameters is needed.
For example, in all the test problems considered
in this work, this parameter has a fixed value and
no extra effort for fine-tuning this parameter was
made.

Our experimental results clearly show that the
proposed method outperforms the classical train-
ing algorithms (BP, MBP and ABP). It runs
much faster, has improved the average number of
epochs needed, and has better convergence rates.

Further work must be done to eliminate the
heuristic parameter µ and optimize the algo-
rithm’s performance. Future work also includes
testing on bigger and more complex real-life
learning tasks.

5

Acknowledgements

We would like to thank Prof. J. Barzilai for send-
ing us a reprint of his work and E.C. Stavropou-
los for his valuable comments and helpful sugges-
tions on earlier drafts of this paper.

References

[1] J. Barzilai and J.M. Borwein, Two

point step size gradient methods, IMA J. Nu-
mer. Anal., 8, 141–148, (1988).

[2] S. Fahlman, An empirical study of learning

speed in back-propagation networks, Techni-
cal Report CMU-CS-88-162, Carnegie Mel-
lon University, Pittsburgh, PA 15213, Sep-
tember 1988.

[3] R.A. Jacobs, Increased rates of con-

vergence through learning rate adaptation,
Neural Networks, 1, 295–307, (1988).

[4] D. Nguyen and B. Widrow, Improv-

ing the learning speed of 2-layer neural net-

work by choosing initial values of the adap-

tive weights, IEEE First International Joint
Conference on Neural Networks, 3, 21–26,
(1990).

[5] E. Polak, Optimization: Algorithms

and Consistent Approximations, Springer-
Verlag, (1997).

[6] D.E. Rumelhart and J.L. McClel-

land(eds), Parallel distributed processing:

explorations in the microstructure of cog-

nition, Vol. 1: Foundations, MIT Press,
(1986).

[7] T.P. Vogl, J.K. Mangis, J.K. Rigler,

W.T. Zink and D.L. Alkon, Accelerat-

ing the convergence of the back-propagation

method, Biological Cybernetics, 59, 257–
263,(1988).

[8] Ph. Wolfe, Convergence conditions for as-

cend methods, SIAM Review, 11, 226–235,
(1969).

6

